Biotransformation of Phenolic 1-Benzyl- N-methyltetrahydroisoquinolines in Plant Cell Cultures Followed by LC/NMR, LC/MS, and LC/CD

Wenhua Cui, ${ }^{\dagger}$ Kinuko Iwasa, ${ }^{*},{ }^{\dagger}$ Makiko Sugiura, ${ }^{\dagger}$ Atsuko Takeuchi, ${ }^{\dagger}$ Chisato Tode, ${ }^{\dagger}$ Yumi Nishiyama ${ }^{\dagger}$ Masataka Moriyasu, ${ }^{\dagger}$ Harukuni Tokuda, ${ }^{\ddagger}$ and Kazuyoshi Takeda ${ }^{\S}$
Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada-ku, Kobe-shi 658-8558, Japan, Department of Biochemistry and Molecular Biology, Kyoto Prefectural University of Medicine, Kawaramachi-dori, Kamigyo-ku, Kyoto-shi 602-0841, Japan, and Yokohama College of Pharmacy, 601 Matanocyo, Hodogayaku, Yokohama-shi 245-0066, Japan

Received October 27, 2006

Abstract

$(\pm)-1$-Benzyl- N-methyltetrahydroisoquinolines $7-10$ and 11-14 with one and two hydroxy groups on the aromatic rings, respectively, were fed individually to cultured cells of Corydalis and Macleaya species, respectively. The structures of the metabolites were determined by using combinatorial techniques, including LC/NMR, LC/MS-MS, and LC/CD. The enantiomeric excesses of the metabolites were derived from LC/CD and LC/MS-MS analyses. In cell cultures of Corydalis and Macleaya species, laudanine (7), with a hydroxy group at C-3', can form the berberine bridge at C-2' and C-6' to produce S - and R-enantiomers of 2,3,9,10- and 2,3,10,11-oxygenated protoberberines ($\mathbf{2 0}$ and $\mathbf{2 1}$), respectively, whereas reticuline (11) and protosinomenine (12), incoporating a hydroxy group at $\mathrm{C}-3^{\prime}$, form the berberine bridge at $\mathrm{C}-2^{\prime}$ to furnish the S-enantiomer of 2,3,9,10-oxygenated protoberberines ($\mathbf{2 3}$ and $\mathbf{2 1}$), respectively.

Within the biogenetic focus for the isoquinoline alkaloids, it has been well documented that tetrahydrobenzylisoquinolines will lead to protoberberines, which may undergo further transformations to furnish an array of additional isoquinoline alkaloids. ${ }^{1-9}$

Studies on the biosynthesis of 2,3,10,11-oxygenated protoberberines have been reported, ${ }^{10,11}$ including Corydalis species ${ }^{12,13}$ and others.

Our present focus was on establishing some of the structural parameters for the eight 1-benzyl- N-methyltetrahydroisoquinolines 7-10 and 11-14, which possess one and two hydroxy groups, respectively. To this end, we concentrated on the analysis of the metabolites from the cell cultures of Corydalis (Fumariaceae) and Macleaya (Papaveraceae) species.
Our conclusions show that the norlaudanosine analogue 7, possessing a 3^{\prime}-hydroxy group, can serve as a precursor of $2,3,9,10-$ and 2,3,10,11-oxygenated protoberberines, whereas the remaining three isomers, $\mathbf{8}-\mathbf{1 0}$, were not metabolized to protoberberines. Among species $\mathbf{1 1}-\mathbf{1 4}$, with two hydroxy groups, 11 and $\mathbf{1 2}$, with a 3^{\prime}-hydroxy function, can form the berberine bridge to produce 2,3,9,10-oxygenated protoberberines.

By enzyme-catalyzed reaction, the structural requirements for the formation of the berberine bridge to produce $2,3,9,10$ - and 1,2,9,10-oxygenated protoberberines from the tetrahydrobenzylisoquinoline alkaloids are as follows: ${ }^{14}$ the N-methyltetrahydrobenzylisoquinoline nucleus must have the S-configuration at $\mathrm{C}-1$, and the aromatic carbon ortho to $\mathrm{C}-2^{\prime}$ must carry a hydroxy group.

Results and Discussion

Syntheses. N-Methyltetrahydropapaverine (6) and $\left[N-\mathrm{CD}_{3}\right]-6$ were obtained by reduction of N-methylpapaverinium salts 5 and $\left[N-\mathrm{CD}_{3}\right]-5$, which were prepared by the N-methylation of commercially available papaverine with $\mathrm{CH}_{3} \mathrm{I}$ and $\mathrm{CD}_{3} \mathrm{I}$, respectively. The LC/APCI-MS (Figure 1) of the products obtained from the acid-catalyzed ether cleavage of $\mathbf{6}$ was measured in the positive ion mode and showed the presence of several products bearing one or more phenolic hydroxy groups as well as the presence of starting material. The 1-benzyl- N-methyltetrahydroisoquinolines show two

[^0]

Figure 1. LC data of the crystalline products obtained by refluxing N-methyltetrahydropapaverine (6) with $47 \% \mathrm{HBr}$ for 13 min . Pump: Hitachi L-6200; column: Cosmosil 5 C18ARII (4.6 i.d. $\times 150 \mathrm{~mm}$); gradient: $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OAc}(0.05 \% \mathrm{TFA}) / \mathrm{CH}_{3} \mathrm{OH}(0.05 \% \mathrm{TFA})$, initial $80 / 20,30 \mathrm{~min} 0 / 100$; flow rate: $1 \mathrm{~mL} / \mathrm{min}$; UV detection: 280 nm (preparative HPLC: initial 80/20, $80 \mathrm{~min} 0 / 100$).
product ions representing the isoquinoline (ion A) and benzyl (ion B) moieties as shown in Scheme 1. The structures of the compounds obtained from peaks a-g and i (Figure 1) were determined by ${ }^{1} \mathrm{H}$ NMR (Table 1) and MS analyses (Table 2 and Scheme 1) to be 7-13 and 14, respectively. The structures of the deuterated derivatives $\left[\mathrm{N}-\mathrm{CD}_{3}\right]-7$ to $\left[\mathrm{N}-\mathrm{CD}_{3}\right]-\mathbf{1 4}$ were determined from ${ }^{1} \mathrm{H}$ NMR and MS data (Table 2, Scheme 1) and were identical to those of the unlabeled compounds. 1-Benzyl- N-methyltetrahydroisoquinolines $\mathbf{7 - 1 4}$ and $\left[N-\mathrm{CD}_{3}\right]-7-\mathbf{1 4}$ were used in the feeding experiments.

Feeding Experiments. Callus tissues of Macleaya cordata, Corydalis platycarpa Makino, and C. ochotensis var. raddeana were incubated at $25^{\circ} \mathrm{C}$ on an agar medium containing the substrate for four weeks (Table 3). Following incubation, media and cells were separated and extracted according to the procedure shown in Figure 2. Alkaloid fractions, E-1, E-2, C-1, and C-2 (Figure 2), were subjected to LC/NMR, LC/MS, and LC/CD.

Precursors 7-10. The metabolism of 1-benzyl- N-methyltetrahydroisoquinolines $\mathbf{7 - 1 0}$, possessing one hydroxy and three methoxy groups on the aromatic A and D rings, respectively, was examined (Table 3) in cultured cells of C. platycarpa or C. ochotensis var. raddeana and M. cordata.

Scheme 1

Table 1. ${ }^{1} \mathrm{H}$ NMR Data ${ }^{a}$ of 1-Benzyl- N-methyltetrahydroisoquinolines (7-14)

proton	compound								NOESYcorrelation
	7	8	9	10	11	12	13	14	
1-H	$4.52^{\text {b }}$	$4.50{ }^{e}$	$3.67{ }^{\text {g }}$	$4.56{ }^{h}$	$4.53{ }^{i}$	$4.50{ }^{h}$	$4.51{ }^{i}$	$4.54{ }^{h}$	$\begin{aligned} & \text { 2-NMe, 8-H } \\ & 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H} \end{aligned}$
2-NMe	2.96	2.92	2.53	2.98	2.92	2.95	2.93	2.95	1-H
$3-\mathrm{H}, 4-\mathrm{H}$ and 9-H	3.0-3.77	3.01-3.65	2.56-3.17	3.05-3.78	3.02-3.70	2.98-3.75	2.95-3.71	2.99-3.71	
5-H	6.81	6.79	6.62	6.82	6.79	6.66	6.65	6.67	6-OMe
6-OMe	3.81	3.85		3.81	3.85				5-H
7-OMe	3.50		3.57	3.50		3.52		3.53	8-H
8-H	6.03	6.18	5.99	6.03	6.24	5.99	6.16	6.00	1-H, 7-OMe
$2^{\prime}-\mathrm{H}$	$6.64{ }^{\text {c }}$	$6.69{ }^{\text {c }}$	$6.58{ }^{\text {c }}$	$6.66{ }^{\text {c }}$	$6.68{ }^{\text {c }}$	$6.64{ }^{\text {c }}$	$6.68{ }^{\text {c }}$	$6.64{ }^{\text {c }}$	3^{\prime}-OMe, 1-H
3'-OMe		3.75	3.79	3.76			3.75	3.76	2'-H
4'-OMe	3.84	3.82	3.85		3.85	3.84	3.82		5'-H
5^{\prime} - H	$6.89{ }^{\text {d }}$	$6.91{ }^{\text {d }}$	$6.77{ }^{d}$	$6.77{ }^{\text {d }}$	$6.89{ }^{\text {d }}$	$6.90{ }^{\text {d }}$	$6.91{ }^{d}$	$6.77{ }^{d}$	$4^{\prime}-\mathrm{OMe}, 6^{\prime}-\mathrm{H}$
$6^{\prime}-\mathrm{H}$	$6.60{ }^{f}$	$6.74{ }^{f}$	$6.65{ }^{f}$	$6.63{ }^{f}$	6.62^{f}	$6.61{ }^{f}$	$6.75{ }^{f}$	$6.63{ }^{f}$	5'-H, 1-H 9-H

${ }^{a} \mathrm{CD}_{3} \mathrm{OD} ; \delta \mathrm{ppm}, 500 \mathrm{MHz} .{ }^{b} \mathrm{~m} .{ }^{c} \mathrm{~d}, J=2.0 \mathrm{~Hz} .{ }^{d} \mathrm{~d}, J=8.0 \mathrm{~Hz} .{ }^{e} \mathrm{t}, J=6.0 \mathrm{~Hz} .{ }^{f} \mathrm{dd}, J=8.0,2.0 \mathrm{~Hz} .{ }^{g} \mathrm{dd}, J=8.5,5.0 \mathrm{~Hz} .{ }^{h} \mathrm{dd}, J=9.0,5.0$ $\mathrm{Hz} .{ }^{i} \mathrm{t}, J=6.5 \mathrm{~Hz} .{ }^{j} \mathrm{t}, J=7.0 \mathrm{~Hz}$.

Table 2. MS Data of 1-Benzyl- N-methyltetrahydroisoquinolines (7-14) and $\left[N-\mathrm{CD}_{3}\right]-1$-Benzyltetrahydroisoquinolines $\left(\left[N-\mathrm{CD}_{3}\right]-7-\left[N-\mathrm{CD}_{3}\right]-\right.$ 14

compound	SIMS m / z	formula	HRSIMS		product ions ${ }^{a} \mathrm{~m} / \mathrm{z}$	
			calcd	found	A	B
7	344	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{4}$	344.1860	344.1862	206	137
$\left[N-\mathrm{CD}_{3}\right]-7$	347	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{D}_{3} \mathrm{NO}_{4}$	347.2049	347.2052	209	137
8	344	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{4}$	344.1860	344.1873	192	151
$\left[N-\mathrm{CD}_{3}\right]-8$	347	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{D}_{3} \mathrm{NO}_{4}$	347.2049	347.2066	195	151
9	344	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{4}$	344.1860	344.1863	192	151
$\left[N-\mathrm{CD}_{3}\right]-9$	347	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{D}_{3} \mathrm{NO}_{4}$	347.2049	347.2059	195	151
10	344	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{4}$	344.1860	344.1875	206	137
$\left[N-\mathrm{CD}_{3}\right]-10$	347	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{D}_{3} \mathrm{NO}_{4}$	347.2049	347.2056	209	137
11	330	$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{4}$	330.1704	330.1702	192	137
$\left[N-\mathrm{CD}_{3}\right]-11$	333	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{D}_{3} \mathrm{NO}_{4}$	333.1892	333.1702	195	137
12	330	$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{4}$	330.1704	330.1707	192	137
[$\left.\mathrm{N}-\mathrm{CD}_{3}\right]-12$	333	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{D}_{3} \mathrm{NO}_{4}$	333.1892	333.1904	195	137
13	330	$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{4}$	330.1704	330.1714	178	151
$\left[N-\mathrm{CD}_{3}\right]-13$	333	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{D}_{3} \mathrm{NO}_{4}$	333.1892	333.1910	181	151
14	330	$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{4}$	330.1704	330.1726	192	137
[$\left.\mathrm{N}-\mathrm{CD}_{3}\right]-14$	333	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{D}_{3} \mathrm{NO}_{4}$	333.1892	333.1908	195	137

${ }^{a}$ These product ions were derived by APCI-MS/MS spectra.

First, precursor 7 was administered to cultured cells of C. platycarpa (Table 3, no. 1). Fraction E-2 (Figure 2) showed nine peaks, $a_{1}-i_{1}$, in LC 1 (Figure 3). From the LC/NMR and LC/MSMS data, peaks $\mathrm{a}_{1}\left([\mathrm{M}+\mathrm{H}]^{+}: m / z 344\right.$, product ion: m / z 206), b_{1} $\left([\mathrm{M}]^{+}: m / z\right.$ 322, product ion: $\left.m / z 307\right), \mathrm{d}_{1}\left([\mathrm{M}+\mathrm{H}]^{+}: m / z 354\right.$, product ions: $m / z 206,189$, and 188), and $\mathrm{h}_{1}\left([\mathrm{M}+\mathrm{H}]^{+}: m / z 326\right.$, product ion: $m / z, 178)$ were attributed to the precursor 7, dehydrocheilanthifoline (15), protopine (16), and cheilanthifoline (17), respectively. Dehydrocheilanthifoline (15), protopine (16), and cheilanthifoline (17) were identified by comparison of their LC/ NMR data with those of authentic samples from C. platycarpa and C. ochotensis var. raddeana, and $\mathbf{1 6}$ was also identified as a component of M. cordata.
Similarly, peak c_{1} (Figure 3) corresponded to cryptopine (18), peak $\mathrm{e}_{1}\left(t_{\mathrm{R}}=9.54 \mathrm{~min}\right)$ to epiberberine (19), peak $\mathrm{f}_{1}\left(t_{\mathrm{R}}=9.82\right.$ $\mathbf{m i n}$) to corytenchine ($\mathbf{2 0}$), and peak g_{1} to tetrahydropalmatrubine
21. Compounds 18-21 have also been identified in the feeding experiment of $1 .{ }^{11}$ Likewise, the stopped-flow ${ }^{1} \mathrm{H}$ NMR spectrum of peak i_{1} is due to tetrahydroepiberberine 22. Laudanine (7) and epiberberine (19) were also found in fraction C-2 (Figure 3).

Furthermore, the metabolites obtained from the feeding of 7 to C. ochotensis var. raddeana (Table 3, no. 2) were found to be cryptopine (18), corytenchine (20), tetrahydropalmatrubine (21), and tetrahydroepiberberine (22). Thus, compound 7 was bioconverted into corytenchine (20) and tetrahydropalmatrubine (21), which was further converted via tetrahydroepiberberine (22) to cryptopine (18) (Scheme 2). Tetrahydroepiberberine (22) might simply arise from the reduction of epiberberine (19). These conversions were confirmed by the feeding of $\left[\mathrm{N}-\mathrm{CD}_{3}\right]-7$ to C. platycarpa (Table 3, no. 13). The deuterated metabolites cryptopine ($\mathrm{m} / \mathrm{z} 372$), corytenchine $(\mathrm{m} / \mathrm{z} 344)$, tetrahydropalmatrubine ($\mathrm{m} / \mathrm{z} 344$), and tetrahydroepiberberine ($\mathrm{m} / \mathrm{z} 342$), and unlabeled epiberberine ($\mathrm{m} / \mathrm{z} 336$), were

Table 3. Administration of 1-Benzyl- N-methyltetrahydroisoquinolines to Cultured Cells of Macleaya and Corydalis Species

no.	callus a	substrate (mg)	medium (mL)	wt of dry cells (g)
1	A	$\mathbf{7}(38)$	800	4.0
2	B	$\mathbf{7}(19)$	400	2.1
3	A	$\mathbf{8}(42)$	800	5.2
4	B	$\mathbf{8}(38)$	800	4.0
5	A	$\mathbf{9}(39)$	800	4.8
6	B	$\mathbf{9}(39)$	800	6.0
7	A	$\mathbf{1 0}(35)$	800	6.3
8	B	$\mathbf{1 0}(35)$	800	4.3
9	A	$\mathbf{1 1}(34)$	800	4.7
10	A	$\mathbf{1 2}(20)$	800	7.2
11	A	$\mathbf{1 3}(39)$	400	3.3
12	A	$\mathbf{1 4}(34)$	800	4.8
13	A	$\left[N-\mathrm{CD}_{3}\right]-\mathbf{7}(29)$	800	5.4
14	C	$\left[N-\mathrm{CD}_{3}\right]-\mathbf{7}(26)$	800	5.9
15	A	$\left[N-\mathrm{CD}_{3}\right]-\mathbf{8}(18)$	400	3.5
16	B	$\left[N-\mathrm{CD}_{3}\right]-\mathbf{8}(18)$	400	2.6
17	C	$\left[N-\mathrm{CD}_{3}\right]-\mathbf{- 8}(18)$	400	2.3
18	A	$\left[N-\mathrm{CD}_{3}\right]-\mathbf{9}(17)$	400	1.9
19	B	$\left[N-\mathrm{CD}_{3}\right]-\mathbf{9}(16)$	400	7.3
20	A	$\left[N-\mathrm{CD}_{3}\right]-\mathbf{1 0}(17)$	400	2.8
21	B	$\left[N-\mathrm{CD}_{3}\right]-\mathbf{- 1 0}(19)$	400	2.1
22	C	$\left[N-\mathrm{CD}_{3}\right]-\mathbf{1 0}(18)$	400	2.4
23	A	$\left[N-\mathrm{CD}_{3}\right]-\mathbf{- 1 1 (1 9)}$	800	3.7
24	A	$\left[N-\mathrm{CD}_{3}\right]-\mathbf{1 2}(19)$	800	5.0
25	A	$\left[N-\mathrm{CD}_{3}\right]-\mathbf{1 3}(6)$	400	2.2
26	A	$\left[N-\mathrm{CD}_{3}\right]-\mathbf{1 4}(35)$	800	3.7

Figure 2. Preparation of samples for LC/NMR, LC/MS, and LC/ CD measurements.
identified from the LC/MS-MS of fraction E-2. Deuterated tetrahydroepiberberine likely underwent dehydrogenation with the loss of deuterium to give unlabeled epiberberine. A trace amount of deuterated N-methyltetrahydropapaverine ($\left[N-\mathrm{CD}_{3}\right]-6$) was also confirmed by LC/MS-MS $\left([\mathrm{M}+\mathrm{H}]^{+}\right.$at $\mathrm{m} / \mathrm{z} 361$, product ions at m/z 209 and 151) (Scheme 1).

Finally, in cultured cells of M. cordata (Table 3, no 14), deuterated 7 was metabolized to deuterated cryptopine ($\mathrm{m} / \mathrm{z} 372$), corytenchine ($\mathrm{m} / \mathrm{z} 344$), tetrahydropalmatrubine ($\mathrm{m} / \mathrm{z} 344$), N methyltetrahydropapaverine ($\mathrm{m} / \mathrm{z} 361$), and tetrahydroepiberberine (m/z 342).

$1 \mathrm{R}=\mathrm{HR}_{4}=\mathrm{R}_{2}=\mathrm{R}_{4}=\mathrm{CH}_{3} \mathrm{R}_{3}=\mathrm{H}$
$2 R=H R_{1}=R_{2}=R_{3}=\mathrm{CH}_{3} R_{4}=H$
$3 \mathrm{R}=H \mathrm{R}_{4}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{CH}_{3} \mathrm{R}_{2}=\mathrm{H}$
$4 \mathrm{R}=\mathrm{HR} \mathrm{R}_{1}=\mathrm{HR}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{CH}_{3}$
$6 \mathrm{R}=\mathrm{CH}_{3} \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{CH}_{3}$
$7 \mathrm{R}=\mathrm{CH}_{3} \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{4}=\mathrm{CH}_{3} \mathrm{R}_{3}=\mathrm{H}$
$8 \mathrm{R}=\mathrm{CH}_{3} \mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{CH}_{3} \mathrm{R}_{2}=\mathrm{H}$
$9 \mathrm{R}=\mathrm{CH}_{3} \mathrm{R}_{1}=\mathrm{HR}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{CH}_{3}$
$10 \mathrm{R}=\mathrm{CH}_{3} \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{CH}_{3} \mathrm{R}_{4}=\mathrm{H}$
$11 R=\mathrm{CH}_{3} \mathrm{R}_{1}=\mathrm{R}_{4}=\mathrm{CH}_{3} \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$
$12 \mathrm{R}=\mathrm{CH}_{3} \mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{H} \quad \mathrm{R}_{2}=\mathrm{R} 4=\mathrm{CH}_{3}$
$13 \mathrm{R}=\mathrm{CH}_{3} \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H} \quad \mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{CH}_{3}$
$14 \mathrm{R}=\mathrm{CH}_{3} \mathrm{R}_{1}=\mathrm{R}_{4}=\mathrm{H} \quad \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{CH}_{3}$

Just as with benzylisoquinoline 7, precursors $\mathbf{8 - 1 0}$ were also administered to cultured cells of C. platycarpa and C. ochotensis var. raddeana (Table 3, no. 3-8). The major metabolite obtained from the feeding of $\mathbf{9}$ and $\mathbf{1 0}$ was identified as N-methyltetrahydropapaverine ($\mathbf{6}$) by analysis of LC/NMR and LC/MS-MS data. A trace amount of $\mathbf{6}$ was also found as a metabolite of $\mathbf{8}$. The bioconversion of 8-10 into $\mathbf{6}$ was confirmed by the feeding of $\left[\mathrm{N}-\mathrm{CD}_{3}\right]-8,-9$, and -10 (Table 3, no. 15-22) (Scheme 2). Significantly, compounds 8-10 were not converted into tetrahydroproto-berberine- or pseudotetrahydroprotoberberine-type compounds.

Scheme 2 summarizes the metabolic transformations of 1-benzyl-N-methyltetrahydroisoquinolines 7-10 in cultured cells of Macleaya and Corydalis species. Among the four isomers ($3^{\prime}-, 4^{\prime}-, 7-$, and 6-hydroxy, respectively), only the 3^{\prime}-hydroxy isomer 7 was converted into 2,3,10,11- and 2,3,9,10-oxygenated tetrahydroprotoberberines ($\mathbf{2 0}$ and $\mathbf{2 1}$). This observation suggests that the presence of the hydroxy group at $\mathrm{C}-3^{\prime}$ is essential for the biotransformation of 1-benzyl- N -methyltetrahydroisoquinolines into 2,3,10,11- and $2,3,9,10$-oxygenated tetrahydroprotoberberines. Thus, the enzyme responsible for the conversion likely shows substrate specificity. This behavior has also been found in the bioconversion of phenolic 1-benzyltetrahydroisoquinoline $\mathbf{1}$ into $2,3,10,11$ - and 2,3,9,10oxygenated tetrahydroprotoberberines. ${ }^{11}$ The structural requirement for the formation of the berberine bridge to produce $2,3,9,10$ - and $1,2,9,10$-oxygenated protoberberines has been studied using enzyme-

Figure 3. LC data of the alkaloid fractions (E-2 and C-2) obtained from the feeding of 7 to C. platycarpa. Pump: Shimadzu LC-10ADvp; column: Cosmosil 5 C18ARII (4.6 i.d. $\times 150 \mathrm{~mm}$); gradient: A $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OAc}(0.05 \% \mathrm{TFA}) / \mathrm{B} \mathrm{CH} 3 \mathrm{CN}(0.05 \% \mathrm{TFA}) \mathrm{A} / \mathrm{B}$: initial 80/20, $25 \mathrm{~min} 55 / 45$, $30 \mathrm{~min} 0 / 100$; flow rate: $1 \mathrm{~mL} / \mathrm{min}$; UV detection: 280 nm .

Scheme 2

catalyzed reactions. ${ }^{14}$ Metabolite 21 was further biotransformed via tetrahydroepiberberine (22) into cryptopine (18). All four 1-benzyltetrahydroisoquinolines 7-10 were O-methylated to give N methyltetrahydropapaverine (6). However, with 9 and 10, N-me-
thyltetrahydropapaverine (6) was the major metabolite, suggesting that the hydroxy groups at C-6 and C-4' in 9 and 10, respectively, might be O-methylated more readily than those at $\mathrm{C}-7$ and $\mathrm{C}-3^{\prime}$ in 8 and 7, respectively.

Figure 4. Mass chromatogram of the selected ions $\mathrm{m} / \mathrm{z} 344$ in the LC/APCI-MS of the alkaloid fraction (E-2) obtained from the feeding of $\left[N-\mathrm{CD}_{3}\right]-7$ to C. platycarpa. Pump: Shimadzu LC10ADvp; column: Chiralcel OJ-RH (4.6 i.d. $\times 150 \mathrm{~mm}$); gradient: A $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OAc}\left(0.05 \%\right.$ TFA)/B $\mathrm{CH}_{3} \mathrm{CN}(0.05 \%$ TFA) A/B: initial 80/20, $10 \mathrm{~min} 60 / 40,20 \mathrm{~min} 60 / 40,30 \mathrm{~min} 0 / 100$; flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$; UV detection: 280 nm .

Table 4. Enantiomeric Excess (\%) of [8-D $\left.{ }_{2}\right]$-Corytenchine ($\left[8-\mathrm{D}_{2}\right]-20$) and $\left[8-\mathrm{D}_{2}\right]$-Tetrahydropalmatrubine ($\left[8-\mathrm{D}_{2}\right]-21$) Obtained from the LC/MS-MS Data

precursor	callus ${ }^{\text {a }}$	alkaloid fraction b	selected ions $[\mathrm{M}+\mathrm{H}]^{+}$	
			$\begin{gathered} m / z 344\left(\left[8-\mathrm{D}_{2}\right]-20\right) \\ R \end{gathered}$	$\begin{gathered} m / z 344\left(\left[8-\mathrm{D}_{2}\right]-21\right) \\ S \end{gathered}$
7	A	E-1	52	80
	A	E-2	30	84
	B	E-1	nd	nd
	B	E-2	46	80

Figure 4 shows the MS chromatogram of selected ions ($\mathrm{m} / \mathrm{z} 344$) in the LC/APCI-MS of the alkaloid fraction E-2 obtained from the feeding of $\left[\mathrm{N}-\mathrm{CD}_{3}\right]-7$ to C. platycarpa. The peaks at 11.1 and 11.6 min were assigned to enantiomers of $\left[8-\mathrm{D}_{2}\right]-\mathbf{2 0}$, with the R - and S-configuration, respectively, at $\mathrm{C}-13 \mathrm{a}$ on the basis of reported data. ${ }^{11}$ Likewise, the peaks at 14.6 and 17.2 min were assigned as enantiomers of $\left[8-\mathrm{D}_{2}\right]-21$, with R - and S-configuration, respectively, at C-13a. ${ }^{11}$ The enantiomeric excesses of $\left[8-D_{2}\right]-20$ and $\mathbf{- 2 1}$ were determined from the ratio of the peak areas of the MS chromatograms of the selected ion ($\mathrm{m} / \mathrm{z} 344$). The results summarized in Table 4 indicate that metabolites 20 and 21 contain different amounts of the S - and R-isomers. Metabolite 21 showed a high predominance of the S-isomer, while metabolite $\mathbf{2 0}$ showed a lower predominance of the R-isomer. Consequently, it is suggested that a stereoselective bioconversion occurs in the metabolic processes in cultured cells of Macleaya and Corydalis species.

In the next phase of our study, the metabolism of 1-benzyl- N methyltetrahydroisoquinolines $\mathbf{1 1} \mathbf{- 1 4}$ and their $\left[N-\mathrm{CD}_{3}\right]$-derivatives ($\left[N-\mathrm{CD}_{3}\right]-\mathbf{1 1}-\left[N-\mathrm{CD}_{3}\right]-14$), which have two hydroxy and two methoxy groups on the aromatic A and D rings, respectively, were examined in C. platycarpa.

First, 7,3'-dihydroxylated $\mathbf{1 1}$ (reticuline) was administered to cultured cells of C. platycarpa (Table 3, no. 9). Trace amounts of laudanine (7) and scoulerine (23) were identified. In order to verify this result, $\left[N-\mathrm{CD}_{3}\right]-\mathbf{1 1}$ was administered to C. platycarpa (Table 3, no. 23), and the resulting fraction E-2 showed peaks $\mathrm{a}_{2}-\mathrm{e}_{2}$ in LC 2 (Figure 5). The compounds associated with peaks a_{2}, b_{2}, and c_{2} were deduced as $\left[N-\mathrm{CD}_{3}\right]$-reticuline ($\left[\mathrm{N}-\mathrm{CD}_{3}\right]-11$), $\left[N-\mathrm{CD}_{3}\right]$ laudanine ($\left[\mathrm{N}-\mathrm{CD}_{3}\right]-7$), and protopine (16), respectively, and peak d_{2} corresponded to dehydrocheilanthifoline (15).

Peak e_{2} in the LC 2 (Figure 5) showed $[\mathrm{M}+\mathrm{H}]^{+}$at $\mathrm{m} / \mathrm{z} 330$ and a product ion at $m / z 178$ in the LC/MS-MS, thus corresponding to $\left[8-\mathrm{D}_{2}\right]$-scoulerine ($\left[8-\mathrm{D}_{2}\right]-23$). This structure was confirmed by comparison of the stopped-flow ${ }^{1} \mathrm{H}$ NMR data with those of authentic (S)-scoulerine measured under the same conditions. Chiral phase LC/CD (A and B in Figure 6) was also performed on fraction E-2 obtained from the feeding of $\left[N-\mathrm{CD}_{3}\right]$-reticuline $\left(\left[N-\mathrm{CD}_{3}\right]-11\right)$, with authentic S-scoulerine used as a reference. The CD of the $\left[8-\mathrm{D}_{2}\right]$-scoulerine metabolite at 20 min in the LC/CD (Figure 6, A) showed a negative Cotton effect at 236 nm , which matched that of S-scoulerine (Figure 6, B).

Precursor 12 (protosinomenine) and the deuterated precursor $\left[N-\mathrm{CD}_{3}\right]-12$, which have the two hydroxy groups at C-6 and C-3', was also administered to cultured cells of C. platycarpa (Table 3, nos. 10 and 24). Fraction E-2 obtained from C. platycarpa showed peaks $a_{3}-h_{3}$ in the LC 3 (Figure 7). From comparison of individual LC/MS-MS data with those of the corresponding alkaloids obtained from the feeding of $\left[\mathrm{N}-\mathrm{CD}_{3}\right]-7$, compounds associated with peaks $\mathrm{a}_{3}, \mathrm{~b}_{3}, \mathrm{~d}_{3}$, and g_{3} were determined to be $\left[\mathrm{N}-\mathrm{CD}_{3}\right]$-protosinomenine ($\left[\mathrm{N}\right.$ - $\left.\mathrm{CD}_{3}\right]-12$), $\left[\mathrm{N}-\mathrm{CD}_{3}\right]$-laudanine $\left(\left[\mathrm{N}-\mathrm{CD}_{3}\right]-7\right)$, $\left[8-\mathrm{D}_{2}\right]$-cryptopine ($\left[8-\mathrm{D}_{2}\right]-18$), and $\left[8-\mathrm{D}_{2}\right]$-tetrahydropalmatrubine ($\left[8-\mathrm{D}_{2}\right]-21$), respectively. $\left[\mathrm{N}-\mathrm{CD}_{3}\right]$-Laudanine $\left(\left[N-\mathrm{CD}_{3}\right]-7\right.$), $\left[8-\mathrm{D}_{2}\right]$-cryptopine ($\left[8-\mathrm{D}_{2}\right]$ 18), and $\left[8-\mathrm{D}_{2}\right]$-tetrahydropalmatrubine $\left(\left[8-\mathrm{D}_{2}\right]-\mathbf{2 1}\right)$ are metabolites of $\left[\mathrm{N}-\mathrm{CD}_{3}\right]$-protosinomenine $\left(\left[\mathrm{N}-\mathrm{CD}_{3}\right]-\mathbf{1 2}\right)$. The isomer of scoulerine (23) predicted to be formed by ring closure of $\mathbf{1 2}$ was not detected. This may be due to readily occurring O-methylation at C-6 to furnish 7. The peaks at 15.3 and 18.2 min in the MS of the selected ion at $m / z 342$ have been assigned as R - and S-enantiomers of (\pm)tetrahydropalmatrubine (21), respectively. ${ }^{11}$ The MS of the selected ion at $\mathrm{m} / \mathrm{z} 344\left(\left[8-\mathrm{D}_{2}\right]-21\right)$ of 18.2 min was identical with that of (S)-tetrahydropalmatrubine (Figure 8), thus indicating that the [8-D D_{2}]-tetrahydropalmatrubine metabolite was the S-enantiomer. From the LC/MS-MS analysis, the compound associated with peak f_{3} was found to be epiberberine (19), which may be a metabolite of $\left[N-\mathrm{CD}_{3}\right]-\mathbf{1 2}$. The compounds associated with peaks $\mathrm{c}_{3}, \mathrm{e}_{3}$, and h_{3} were deduced as dehydrocheilanthifoline (15), protopine (16), and cheilanthifoline (17), respectively, which are components of the callus.

In a similar fashion, 6,7-dihydroxylated $\mathbf{1 3}$ and $\left[N-\mathrm{CD}_{3}\right]-\mathbf{1 3}$ were administered to cultured cells of C. platycarpa (Table 3, nos. 11 and 25). Codamine (8) and $\left[N-\mathrm{CD}_{3}\right]-8$ were identified (Table 2). In the same way, isoorientaline (14) and $\left[\mathrm{N}-\mathrm{CD}_{3}\right]-\mathbf{1 4}$, with the two hydroxy groups at C-6 and C-4', were administered to C. platycarpa (Table 3, nos. 12 and 26). Pseudocodamine (10) and N-methyltetrahydropapaverine (6) were characterized as the metabolites of $\mathbf{1 4} ;\left[N-\mathrm{CD}_{3}\right]-\mathbf{1 0}$ and $\left[N-\mathrm{CD}_{3}\right]-\mathbf{6}$, as the metabolites of $\left[\mathrm{N}-\mathrm{CD}_{3}\right]-14$.

Scheme 3 summarizes the biotransformations demonstrated by the results of feeding experiments of 1-benzyl- N-methyltetrahydroisoquinolines 11-14 to cultured cells of Macleaya and Corydalis species.

Among the four 1-benzyl- N-methyltetrahydroisoquinolines with two hydroxy and two methoxy groups on the aromatic A and D rings (11-14), respectively, compounds $\mathbf{1 1}$ and $\mathbf{1 2}$ were converted into the S-enantiomer of $2,3,9,10$-oxygenated tetrahydroprotoberberines $\mathbf{2 3}$ and 21, respectively, while $\mathbf{1 3}$ and $\mathbf{1 4}$ were not biotransformed to tetrahydroprotoberberines. These observations with dihydroxy-substituted compounds confirm that the presence of a hydroxy group at $\mathrm{C}-3^{\prime}$ is essential for the biotransformation of 1-benzyl- N-methyltetrahydroisoquinolines into 2,3,9,10-oxygenated tetrahydroprotoberberines. The product formed by ring closure at C-6' was not detected. This is identical with the result reported by Kutchan et al. ${ }^{14}$

The following sequences of O-methylation were thus identified in the present study. Reticuline (11) was biotransformed to (S)-scoulerine (23), since the hydroxy group at C-7 was not O-methylated readily. However, protosinomenine (12) was readily O-methylated at C-6 to provide laudanine (7), which in turn was bioconverted into (S)tetrahydropalmatrubine (21). Eventually, (S)-tetrahydropalmatrubine

Figure 5. LC data of the alkaloid fraction (E-2) obtained from the feeding of $\left[N-\mathrm{CD}_{3}\right]$-reticuline $\left(\left[N-\mathrm{CD}_{3}\right]-11\right)$ to C. platycarpa. Pump: Varian Prostar model 230; column: Chiralcel OJ-RH (4.6 i.d. $\times 150 \mathrm{~mm}$); gradient: A $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OAc} / \mathrm{D}_{2} \mathrm{O}(0.05 \% \mathrm{TFA}) / \mathrm{B} \mathrm{CH} 3 \mathrm{CN}_{3} \mathrm{CN}$ (0.05% TFA) A/B: initial 80/20, $10 \mathrm{~min} 60 / 40$, $20 \mathrm{~min} 60 / 40$; flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$; UV detection: 280 nm .

Figure 6. UV and CD chromatograms from the LC/CD of (S)-scoulerine (S-23) and the alkaloid fraction (E-2) obtained from the feeding of $\left[N-\mathrm{CD}_{3}\right]$-reticuline $\left(\left[N-\mathrm{CD}_{3}\right]-11\right)$ to C. platycarpa. A: UV and CD chromatograms of the alkaloid fraction (E-2). B: UV and CD chromatograms of authentic $S-23$.
(21) was converted to cryptopine (18). Compound $\mathbf{1 3}$ was O methylated at C-6 to give codamine (8), indicating that the hydroxy group at C-6 is more readily O-methylated than that at C-7. Finally, isoorientaline (14) underwent O-methylation at C-6 to produce pseudocodamine (10), which was in turn O-methylated at $\mathrm{C}-4^{\prime}$ to yield N -methyltetrahydropapaverine (6).

It can, therefore, be concluded that in cell cultures of Corydalis and Macleaya species, laudanine (7), with a hydroxy group at C-3', can form the berberine bridge at both positions $\mathrm{C}-2^{\prime}$ and $\mathrm{C}-6^{\prime}$ to produce S - and R-enantiomers of 2,3,9,10- and 2,3,10,11-oxygenated protoberberines ($\mathbf{2 0}$ and 21), respectively, whereas reticuline (11) and protosinomenine (12), incorporating a hydroxy group at C-3', form the berberine bridge at $\mathrm{C}-2^{\prime}$ to furnish the S-enantiomers of

2,3,9,10-oxygenated protoberberines (23 and 21), respectively. There are differences in the position of ring closure between laudanine (7) and reticuline (11) or protosinomenine (12) and in the configuration at $\mathrm{C}-13 \mathrm{a}$ of the protoberberine metabolites obtained from $\mathbf{7}$ and $\mathbf{1 1}$ or $\mathbf{1 2}$. These may be due to difference in the berberine bridge-forming enzyme. Formation of the protoberberines from reticuline (11) and protosinomenine (12) parallel the results demonstrated by Kutchan et al. ${ }^{14}$

Experimental Section

Materials. In 1974, 1989, and 1981, the calli of M. cordata, C. platycarpa Makino, and C. ochotensis var. raddeana, respectively, were derived from the stems of wild plants grown in Kobe (Japan) on

Figure 7. LC data of the alkaloid fraction (E-2) obtained from the feeding of $\left[N-\mathrm{CD}_{3}\right]$-protosinomenine $\left(\left[N-\mathrm{CD}_{3}\right]-12\right)$ to C. platycarpa. Pump: Varian Prostar model 230; column: Cosmosil 5 C18ARII (4.6 i.d. $\times 150 \mathrm{~mm}$); gradient: A $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OAc} / \mathrm{D}_{2} \mathrm{O}(0.05 \%$ TFA)/B $\mathrm{CH}_{3} \mathrm{CN}(0.05 \%$ TFA) A/B: initial 80/20, $25 \min 55 / 45,26 \mathrm{~min} 0 / 100$; flow rate: $1 \mathrm{~mL} / \mathrm{min}$; UV detection: 280 nm .

A selected ion:m/z 344

Figure 8. Mass chromatograms of the selected ions. A: alkaloid fraction (E-2) obtained from the feeding of $\left[N-\mathrm{CD}_{3}\right]-\mathbf{1 2}$ to C. platycarpa. B: Authentic (\pm)-tetrahydropalmatrubine (21). Pump: Shimadzu LC-10ADvp; column: Chiralcel OJ-RH (4.6 i.d. $\times 150$ $\mathrm{mm})$; gradient: A $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OAc}(0.05 \% \mathrm{TFA}) / \mathrm{B} \mathrm{CH} 33 \mathrm{CN}(0.05 \%$ TFA) A/B: initial 80/20, $10 \mathrm{~min} 60 / 40,20 \mathrm{~min} 60 / 40,30 \mathrm{~min} 0 / 100$; flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$; UV detection: 280 nm .

Murashige and Skoog's medium containing 2,4-dichlorophenoxyacetic acid ($1 \mathrm{mg} / \mathrm{L}$), kinetin ($0.1 \mathrm{mg} / \mathrm{L}$), yeast extract (0.1%), and agar (1%).

The callus tissues were subcultured every three or four weeks on fresh medium at $25^{\circ} \mathrm{C}$ in the dark.

The natural product (S)-scoulerine (23) $\left\{[\alpha]_{\mathrm{D}}-270\right.$ (c 0.12 , $\left.\left.\mathrm{CH}_{3} \mathrm{OH}\right)\right\}$ was obtained from C. platycarpa Makino. Papaverine hydrochloride and $\mathrm{CD}_{3} \mathrm{I}$ were purchased from Sigma Chemical Co.

HPLC Parameters for LC/NMR, LC/MS, and LC/CD. Chromatographic preparations were performed using a Cosmosil $5 \mathrm{C}_{18}$-AR (4.6 i.d. $\times 150 \mathrm{~mm}$) reversed-phase column. The mobile phases [(A) $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OAc}\left(0.05 \% \mathrm{TFA}, \mathrm{D}_{2} \mathrm{O}\right.$ for LC/NMR) and (B) $\mathrm{CH}_{3} \mathrm{CN}$ $(0.05 \%$ TFA $)$ or $\mathrm{CH}_{3} \mathrm{OH}(0.05 \% \mathrm{TFA})$] were used for linear or nonlinear gradient elution.

The flow rate was $1 \mathrm{~mL} / \mathrm{min}$ (detection: 280 nm). The chiral analytical separation was carried out on a chiral OJ-RH column (4.6 i.d. $\times 150 \mathrm{~mm}$, Daicel Chemical Ltd.) at room temperature for LC/ MS and $40^{\circ} \mathrm{C}$ for LC/CD. The flow rate was $0.5 \mathrm{~mL} / \mathrm{min}$ (detection: LC/MS 280 nm , LC/CD 236 nm).

LC/APCI-MS Method. The LC/APCI-MS (/MS) spectra were measured with Q3 and product ion scans. Molecular weight information was obtained through the protonated molecular ions $[\mathrm{M}+\mathrm{H}]^{+}$, and product ions were recorded by LC/MS-MS. LC/APCI-MS for acidcleavage products of N -methyltetrahydropapaverine (6) was carried out using a Hitachi M-1000H connected to a Hitachi L-6200 intelligent pump and a Hitachi L-4000 UV detector. APCI-MS conditions: nebulizer and vaporizer temperatures were 320 and $399^{\circ} \mathrm{C}$, respectively. The drift voltage was 40 V . The quasi-molecular ions were monitored in the SIM method. LC was performed on a Cosmosil $5 \mathrm{C}_{18}$-AR (4.6 i.d. $\times 150 \mathrm{~mm}$) reversed-phase column. The mobile phase was 0.1 M $\mathrm{NH}_{4} \mathrm{OAc}(0.05 \% \mathrm{TFA}, \mathrm{A})$, to which $\mathrm{CH}_{3} \mathrm{OH}(0.05 \%$ TFA, B) was added by a linear gradient (initial $20 \% \mathrm{~B}, 30 \mathrm{~min} 100 \% \mathrm{~B}$). The flow rate was $1 \mathrm{~mL} / \mathrm{min}$ (detection: 280 nm).

LC/APCI-MS (/MS) was measured on an Applied Biosystems API 3000 triple quadrapole mass spectrometer (MS/MS) with a heated nebulizer interface as described in the previous paper. ${ }^{11}$

LC/NMR Method. The LC/NMR spectra were measured in the stopped-flow mode. LC-NMR data were acquired using a Varian UNITY-INOVA-500 spectrometer (${ }^{1} \mathrm{H}: 499.83 \mathrm{MHz}$) equipped with a $60 \mu \mathrm{~L}$ tripleresonance microflow NMR probe. $1 \mathrm{D}{ }^{1} \mathrm{H}$ NMR spectra were obtained in stopped-flow mode as described in the previous paper. ${ }^{11}$

Scheme 3

LC/CD Method. The LC/CD analysis was carried out on a chiral reversed-phase column at 236 nm . Chromatographic separations were performed using a Jasco PU-2080Plus intelligent pump with a column oven (Jasco 860-CO), a Jasco Browin NT, HSS-2000 data processor, and a Jasco CD-2095Plus CD chiral detector (Hg-Xe lamp), simultaneously monitoring the CD and UV signals at one specific wavelength (range $220-420 \mathrm{~nm}$). A nonlinear gradient (initial $20 \% \mathrm{~B}, 10 \mathrm{~min} 40 \%$ B, $20 \mathrm{~min} 40 \% \mathrm{~B}, 30 \mathrm{~min} 100 \% \mathrm{~B}$) was programmed. The flow rate was $0.5 \mathrm{~mL} / \mathrm{min}$ (detection: 236 nm).

Preparation of 1-Benzyl- N -methyltetrahydroisoquinolines 7-14.

N -Methylpapaverinium salt (5) and N -methyltetrahydropapaverine (6) were prepared according to the procedure described before. ${ }^{15} \mathrm{~A}$ solution of racemic N-methyltetrahydropapaverine (6) (500 mg) in 47% $\mathrm{HBr}(1 \mathrm{~mL})$ was refluxed for 13 min . Hydrobromic acid was evaporated in vacuo. The residue was dissolved in DMSO (0.5 mL) and was separated by preparative HPLC (Hitachi L-6250 intelligent pump and Hitachi L-4000 UV detector), which was performed on a Cosmosil 5 C_{18}-AR (20 i.d. $\times 250 \mathrm{~mm}$) reversed-phase column. As a mobile phase, (A) $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OAc}(0.05 \% \mathrm{TFA})$ and (B) $\mathrm{CH}_{3} \mathrm{OH}(0.05 \% \mathrm{TFA})$ were used in a linear gradient (initial 20% B, $80 \mathrm{~min} 100 \% \mathrm{~B}$). The flow rate was $6 \mathrm{~mL} / \mathrm{min}$ (detection: 280 nm). The eluent obtained from the peaks a-1 in the LC (Figure 1) was evaporated, and the residue was further purified by $\mathrm{HPLC}\left[\mathrm{H}_{2} \mathrm{O}(0.05 \% \mathrm{TFA})-\mathrm{CH}_{3} \mathrm{OH}(0.05 \%\right.$ TFA $\left.)\right]$ to give the trifluoroacetates of peaks a $(7,42 \mathrm{mg}), \mathrm{b}(\mathbf{8}, 24 \mathrm{mg}), \mathrm{c}(\mathbf{9}$, $23 \mathrm{mg})$, d (10, 66 mg), e (11, 35 mg), f ($\mathbf{1 2}, 20 \mathrm{mg}$), g (13, 10 mg$)$, h $(71 \mathrm{mg})$, $\mathrm{i}(\mathbf{1 4}, 34 \mathrm{mg}), \mathrm{j}(35 \mathrm{mg})$, $\mathrm{k}(20 \mathrm{mg})$, and $\mathrm{l}(10 \mathrm{mg})$. For ${ }^{1} \mathrm{H}$ NMR and MS data, see Tables 1 and 2.

Preparation of $\left[\mathrm{N}-\mathrm{CD}_{3}\right]-1$-Benzyltetrahydroisoquinolines $\left[\mathrm{N}-\mathrm{CD}_{3}\right]-$ $7-\left[N-\mathrm{CD}_{3}\right]-14 .\left[N-\mathrm{CD}_{3}\right]-5$ was prepared by treatment of papaverine with $\mathrm{CD}_{3} \mathrm{I}$ according to the method used for the preparation of $\mathbf{5} .{ }^{15}$ $\left[\mathrm{N}-\mathrm{CD}_{3}\right]-6$ was prepared from $\left[\mathrm{N}-\mathrm{CD}_{3}\right]-5$ according to the method used for the preparation of $6 .{ }^{15}\left[N-\mathrm{CD}_{3}\right]-6(1 \mathrm{~g})$ in $47 \% \mathrm{HBr}(1 \mathrm{~mL})$ was refluxed for 9.5 min . Hydrobromic acid was evaporated in vacuo. The residue was dissolved in DMSO (0.5 mL) and was separated by preparative HPLC to give the trifluoroacetates of $\left[N-\mathrm{CD}_{3}\right]-7(80 \mathrm{mg})$, $\left[N-\mathrm{CD}_{3}\right]-\mathbf{8}(48 \mathrm{mg}),\left[N-\mathrm{CD}_{3}\right]-9(38 \mathrm{mg}),\left[N-\mathrm{CD}_{3}\right]-10(86 \mathrm{mg}),\left[N-\mathrm{CD}_{3}\right]-$
$\mathbf{1 1}(19 \mathrm{mg}),\left[N-\mathrm{CD}_{3}\right]-\mathbf{1 2}(19 \mathrm{mg}),\left[N-\mathrm{CD}_{3}\right]-\mathbf{1 3}(6 \mathrm{mg})$, and $\left[N-\mathrm{CD}_{3}\right]-\mathbf{1 4}$ (35 mg). ${ }^{1} \mathrm{H}$ NMR data were identical with those of the unlabeled derivatives, except for the N-methyl group. For MS data, see Table 2.

Feeding Experiments. Substrates were dissolved in $\mathrm{H}_{2} \mathrm{O}(2-4 \mathrm{~mL})$ and introduced through a sterile bacterial filter into 100 mL conical flasks containing 40 mL of autoclaved MS medium, identical with that employed in the subculture. Calli (ca. $4-5 \mathrm{~g}$) were transferred to each conical flask and incubated at $25^{\circ} \mathrm{C}$ in the dark for four weeks (Table 3). Cells and medium were separated and extracted with $\mathrm{CH}_{3} \mathrm{OH}$ at 60 ${ }^{\circ} \mathrm{C}$. Extracts were worked up as described in Figure 2.

References and Notes

(1) Battersby, A. R.; Binks, R.; Foulkes, D. M.; Francis, R. J.; McCaldin, D. J.; Ramuz, H. Proc. Chem. Soc. 1963, 203.
(2) Barton, D. H. R. Pure Appl. Chem. 1964, 9, 35-47.
(3) Battersby, A. R. Pure Appl. Chem. 1967, 14, 117-136.
(4) Leete, E.; Murrill, S. J. B. Phytochemistry 1967, 6, 231-235.
(5) Müller, M. J.; Zenk, M. H. Planta Med. 1992, 58, 524-527.
(6) Zenk, M. H. Pure Appl. Chem. 1994, 66, 2023-2028.
(7) De-Eknamkul, W.; Tanahashi, T.; Zenk, M. H. Phytochemistry 1992, 31, 2713-2717.
(8) Kammerer, L.; De-Eknamkul, W.; Zenk, M. H. Phytochemistry 1994, 36, 1409-1416.
(9) Iwasa, K. In The Alkaloids; Cordell G. A., Ed.; Academic Press: New York, 1995; Vol 46, pp 273-346.
(10) Iwasa, K.; Kuribayashi, A.; Sugiura, M.; Moriyasu, M.; Lee, D.-U.; Wiegrebe, W. Phytochemistry 2003, 64, 1229-1238.
(11) Iwasa, K.; Cui, W. H.; Sugiura, M.; Takeuchi, A.; Moriyasu, M.; Takeda, K. J. Nat. Prod. 2005, 68, 992-1000.
(12) Preininger, V. In The Alkaloids; Brossi, A., Ed.; Academic Press: New York, 1986; Vol. 29, pp 1-98.
(13) Lu, S.-T.; Su, T.-L.; Kametani, T.; Ujiie, A.; Ihara, M.; Fukumoto, K. J. Chem. Soc., Perkin Trans. 1 1976, 63-68.
(14) Kutchan, T. M.; Dittrich, H. J. Biol. Chem. 1995, 270, 24475-24481.
(15) Cui, W. H.; Iwasa, K.; Tokuda, H.; Kashihara, A.; Mitani, Y.; Hasegawa, T.; Nishiyama, Y.; Moriyasu, M.; Nishino, H.; Hanaoka, M.; Mukai, C.; Takeda, K. Phytochemistry 2006, 67, 70-79.

NP068060R

[^0]: * Corresponding author. E-mail: k-iwasa@kobepharma-u.ac.jp. Tel: 081-78-441-7544. Fax: 081-78-441-7544.
 ${ }^{\dagger}$ Kobe Pharmaceutical University.
 ${ }^{\ddagger}$ Kyoto Prefectural University of Medicine.
 ${ }^{\text {§ }}$ Yokohama College of Pharmacy.

